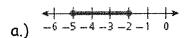
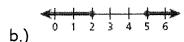
HAlgebra 231

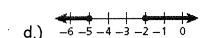
Part 1 Multiple Choice.

_____1.) Simplify:
$$\left(\frac{6x^{-5}y^3}{5y^{-4}}\right)^2$$
.

- a.) $\frac{36y^{14}}{25y^{10}}$
- b.) $\frac{6y^2}{5y^7}$
- c.) $\frac{6}{5x^7v^2}$
- d.) $\frac{36y^2}{25x^7}$


_2.) Line I passes through (1, -3) and is perpendicular to $y = \frac{1}{5}x - 7$. What is the equation of line 1?


- a.) y = -5x + 2
- b.) y=-5x-2 c.) $y=-\frac{1}{5}x-\frac{14}{5}$ d.) $y=\frac{1}{5}x-\frac{14}{5}$


_____3.) Evaluate f(-3) if $f(x) = x^2 + 2x - 1$.

- a.) f(-3) = -18
- b.) f(-3) = -1 c.) f(-3) = 2 d.) f(-3) = 14

_4.) Which is the graph of the solution to $|2x-7| \ge 3$?

5.) If $P(x) = x^3 - 2x^2 - 3x + 5$ and P(a) = -1, then what is the value of a?

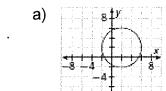
- a.) -2
- b.) 0
- c.) 2
- d.) 3

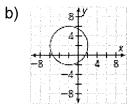
_6.) Solve: 6x-2(2+x)=9x+(4-5x).

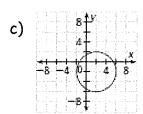
- a) x = 0
- b) x = 8
- c) all real numbers d) no solution

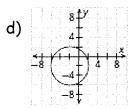
_12.) List all the roots of the equation: $x^4 + x^2 - 2 = 0$.

$$x^4 + x^2 - 2 = 0$$


a)
$$\{\pm 1, \pm i\}$$


b)
$$\{\pm 1, \pm \sqrt{2}\}$$


a)
$$\{\pm 1, \pm i\}$$
 b) $\{\pm 1, \pm \sqrt{2}\}$ c) $\{\pm 1, \pm i\sqrt{2}\}$ d) $\{\pm 1, \sqrt{2} \pm i\}$


d)
$$\{\pm 1, \sqrt{2} \pm i\}$$

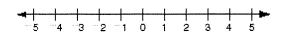
13.) Which is the graph of $(x+2)^2 + (y-2)^2 = 16$?



HAlgebra 231 Part 2 Short Answer

1.) State the domain and range of the function graphed at right:

Range:_

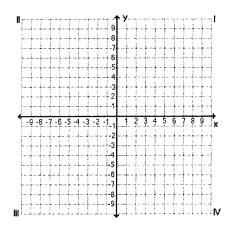


2.) Solve for $x: \frac{2}{2x-5} = \frac{3}{x+1}$

3.) Solve for x: |9-3x|=21

4.) Solve for x: $\frac{3}{4}(-4x-12) = -3(3+x)$

5.) Solve for x and graph the solution: $-10 \le 3x + 5 < 8$



- 6.) Solve the equation to the nearest hundredth, if necessary $8(x-7)^2 = 200$.
- 7.) The equation y=0.5x+14.3 represents the projected college enrollment, where x represents the number of years since 1998, and y is the enrollment in thousands. Use the formula to predict the enrollment for 2010.

8.) Graph the system and approximate the solution to the system of equations:

$$\begin{cases} y = 2 \\ 3x - y = 6 \end{cases}$$

Solution =	
------------	--

9.) Simplify: $\frac{2+5i}{6-8i}$

- 10.) Given the quadratic function $y = 3x^2 9x + 12$ find:
 - a.) the coordinates of the vertex

- b.) the equation for the axis of symmetry
- c.) the x-intercept(s)
- d.) the y-intercept(s)

- 19. a.) _____
 - c.)
 - d.) ____

11.) Solve the system of equations algebraically : $\begin{cases} y = 2x - 4 \\ 3x - y = -2 \end{cases}$

12.) The formula $s = \sqrt{\frac{A}{4.828}}$ can be used to approximate the side length, s, of a regular octagon with area A. A stop sign is shaped like a regular octagon with a side length of 12.4 inches. To the nearest square inch, what is the area of the stop sign?

- 13.) Janine has job offers at two companies. One company offers a starting salary of \$28,000 with a raise of \$3000 every year. The other company offers a starting salary of \$36,000 with a raise of \$2,000 every year.
 - a) After how many years would the salary be the same for both companies?

b) What would the salary be?

14.)
$$\frac{3x+6}{x-5} \cdot \frac{x^2-3x-10}{x^2-4}$$

$$15.) \quad \frac{4x^6}{x^2y} \div \frac{6x}{y^4}$$

16.)
$$\frac{3x}{x-3} - \frac{x}{x-3}$$

17.)
$$\frac{\frac{1}{x}+1}{\frac{1}{x}-x}$$

- 18.) Solve the equation $\log_4(x-6) + \log_4 x = 2$, for x.
- 19.) What are the solutions to the equation $x^3 + 3x^2 = 10x$?
- 20.) What is the remainder when $4x^3 2x^2 10x + 1$ is divided by (x 3)?
- 21.) Write a polynomial equation with linear and quadratic factors having all integral coefficients and zeros at 1+i, $\sqrt{2}$, -3

Solve for x (round answer to the nearest hundredth where necessary):

22.)
$$\log_{x} 216 = 3$$

23.)
$$10^{x} = 4720$$

24.)
$$e^{3x} = e^{x-4}$$

25.)
$$2\log_3 x = \log_3 (2x+3)$$

26.)
$$(x+2)^{\frac{1}{3}} = 3$$

27.)
$$\sqrt{5x+2} = 2\sqrt{x}$$

28.)
$$\frac{3}{x} + \frac{3x+1}{x^2} = \frac{13}{x^2}$$

29.) What is the quotient of
$$\frac{4-x^2}{x^2-x-2} \div (x^2+3x+2)$$
?

30.) If
$$f(x)=3x-4$$
, find $f^{-1}(x)$.

31.) If the population of a city was 2 million in 1995 and growing at a rate 6.4%, what will the population be in 2000?

32.) The rate at which a liquid vitamin breaks down in the average human body can be modeled by $y = D(0.95)^x$, where y ml of the original dose ,D, remains after x minutes. How long will it take the original dose of 15 ml to be reduced to less than 5 ml?

33.) Given
$$f(x) = \frac{1}{x+2}$$
 and $g(x) = 3x + 5$ find $f(g(x))$.

HAlgebra 231

Part 1 Multiple Choice.

_____1.) Simplify: $\left(\frac{6x^{-5}y^3}{5y^{-4}}\right)^2$.

- a.) $\frac{36y^{14}}{25y^{10}}$
- b.) $\frac{6y^2}{5y^7}$
- c.) $\frac{6}{5x^7y^2}$ d.) $\frac{36y^2}{25x^7}$

 $\frac{\lambda}{2}$ 2.) Line I passes through (1, -3) and is perpendicular to $y = \frac{1}{5}x - 7$. What is the equation of line 1?

- a.) y = -5x + 2
- b.) y=-5x-2 c.) $y=-\frac{1}{5}x-\frac{14}{5}$ d.) $y=\frac{1}{5}x-\frac{14}{5}$

_____3.) Evaluate f(-3) if $f(x) = x^2 + 2x - 1$.

- b.) f(-3) = -1 c.) f(-3) = 2 d.) f(-3) = 14

4.) Which is the graph of the solution to $|2x-7| \ge 3$?

- d) -6-5-4-3-2-1 0

5.) If $P(x) = x^3 - 2x^2 - 3x + 5$ and P(a) = -1, then what is the value of a?

- a.) -2
- b.) 0
- c.) 2
- d.) 3

6.) Solve: 6x-2(2+x)=9x+(4-5x).

- a) x = 0
- b) x = 8
- c) all real numbers d) no solution

- _7.) Find the function for the graph of $f(x) = \sqrt{x}$ after a translation of 4 units to the right and 3 units down.
 - a.) $g(x) = 3 + \sqrt{x-4}$
- b). $g(x) = 3 + \sqrt{x+4}$
- c). $q(x) = -3 + \sqrt{x-4}$
- d.) $q(x) = -3 + \sqrt{x+4}$

- 8.) The cost of catering a banquet varies directly as the number of people who attend the banquet. If it costs \$3875 to cater a banquet that is attended by 250 people, how much will it cost to cater a banquet that is attended by 400 people?
- a). \$6200
- b). \$7000
- c) \$7750
- d.) \$8500

- 9.) Which multiplier represents a 7% decay?
- a.) 0.93
- b.) -0.07 c.) 0.07
- d.) -0.93

10.) Which describes the end behavior of the graph of

$$y = -x^3 + 2x^2 - 4x + 2$$
?

- a.) rises at both ends
- b.) rises on the right, falls on the left
- c.) falls at both ends
- d.) rises on the left, falls on the right

- _11.) Find the solution to the equation: $\ln(x+3) \ln 10 = 0$.
- a) -3
- b) 0

- c) 10
- d) 7

- _12.) Determine the location of the horizontal asymptotes in the graph of the function $y = \frac{3x-2}{2x+1}$.
- a.) y = 2
- b.) y = 1.5 c.) y = 3
- d.) There are none

- 13.) If $\frac{x^2-6x+8}{x-2}=5$, what is x?

- d.) -9

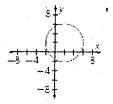
- ____11.) Factor: 27x³-64.
- a) $(3x-4)(9x^2+12x+16)$ b) $(3x+4)(9x^2-12x+16)$
- c) $(3x-4)(x^2+16)$
- d) $(27x-64)(x^2+1)$

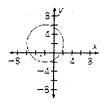
12.) List all the roots of the equation: $x^4 + x^2 - 2 = 0$.

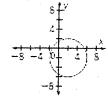
$$x^4 + x^2 - 2 = 0$$
.

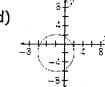
a)
$$\{\pm 1, \pm i\}$$

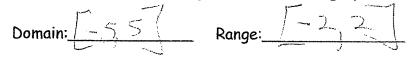
b)
$$\{\pm 1, \pm \sqrt{2}\}$$

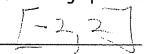

b)
$$\{\pm 1, \pm \sqrt{2}\}$$
 c) $\{\pm 1, \pm i\sqrt{2}\}$ d) $\{\pm 1, \sqrt{2} \pm i\}$

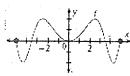

d)
$$\{\pm 1, \sqrt{2} \pm i\}$$


_13.) Which is the graph of $(x+2)^2 + (y-2)^2 = 16$?



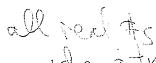






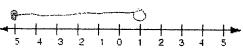
HAlgebra 231 Part 2 Short Answer

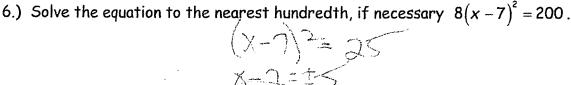
1.) State the domain and range of the function graphed at right:


2.) Solve for $x: \frac{2}{2x-5} = \frac{3}{x+1}$

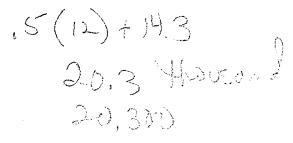
3.) Solve for x: |9-3x|=21

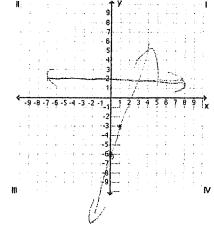
$$9-3x=21$$
 $9-3x=-21$ $-3x=12$ $-3x=-30$


X=-4 10

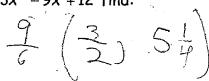

4.) Solve for x: $\frac{3}{4}(-4x-12) = -3(3+x)$

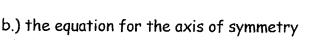
5.) Solve for x and graph the solution: $-10 \le 3x + 5 < 8$


$$-10 \le 3x + 5 < 8$$



7.) The equation y=0.5x+14.3 represents the projected college enrollment, where x represents the number of years since 1998, and y is the enrollment in thousands. Use the formula to predict the enrollment for 2010.


8.) Graph the system and approximate the solution to the system of equations:


$$\begin{cases} y = 2 \\ 3x - y = 6 \end{cases}$$
Solution =

9.) Simplify:
$$\frac{2+5i}{6-8i}$$

- 10.) . Given the quadratic function , $y = 3x^2 9x + 12$ find:
 - a.) the coordinates of the vertex

 $a\left(\frac{3}{2},5t\right)$

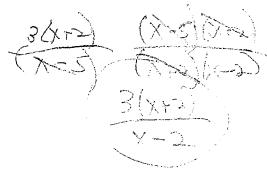
d.) the y-intercept(s)

11.) Solve the system of equations algebraically:
$$\begin{cases} y = 2x - 4 \\ 3x - y = -2 \end{cases}$$

$$\frac{3x-2x-4-2}{x=-6} \left(-6,-16\right)$$

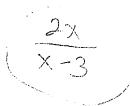
$$(-6, -16)$$

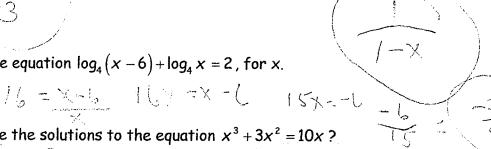
12.) The formula $s = \sqrt{\frac{A}{4.828}}$ can be used to approximate the side length, s, of a regular octagon with area A. A stop sign is shaped like a regular octagon with a side length of 12.4 inches. To the nearest square inch, what is the area of the stop sign?


- 13.) Janine has job offers at two companies. One company offers a starting salary of \$28,000 with a raise of \$3000 every year. The other company offers a starting salary of \$36,000 with a raise of \$2,000 every year.
 - a) After how many years would the salary be the same for both companies?

b) What would the salarly be?

#52,000


14.)
$$\frac{3x+6}{x-5} \cdot \frac{x^2-3x-10}{x^2-4}$$


15.)
$$\frac{4x^{\circ}}{x^{2}y} \div \frac{6x}{y^{4}}$$

$$\frac{1}{x} + 1$$

16.)
$$\frac{3x}{x-3} - \frac{x}{x-3}$$

17.)
$$\frac{\frac{1}{x}+1}{\frac{1}{x}-x}$$

18.) Solve the equation
$$\log_4(x-6) + \log_4 x = 2$$
, for x.

19.) What are the solutions to the equation
$$x^3 + 3x^2 = 10x$$

19.) What are the solutions to the equation
$$x^3 + 3x^2 = 10x$$
?

20.) What is the remainder when $4x^3 - 2x^2 - 10x + 1$ is divided by $(x - 3)$?

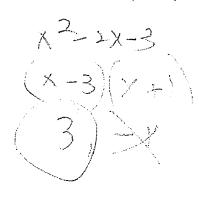
21.) Write a polynomial equation with linear and quadratic factors

21.) Write a polynomial equation with linear and quadratic factors having all integral coefficients and zeros at
$$1+i$$
, $\sqrt{2}$, -3

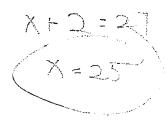
$$(x+3)(x^2-2)(x^2-2x+3)$$

Solve for x (round answer to the nearest hundredth where necessary):

23.) $10^{x} = 4720$

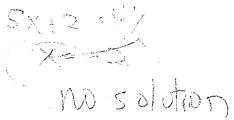

22.)
$$\log_{x} 216 = 3$$

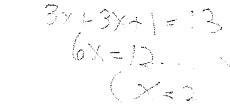
$$\chi^3 = 516$$
 3,67


24.)
$$e^{3x} = e^{x-4}$$

$$3x = x - 4$$

 $2x = -4$
 $x = -2$

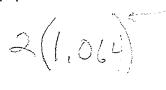

 $2\log_3 x = \log_3 (2x+3)$ 25.)


26.) $(x+2)^{\frac{1}{3}} = 3$

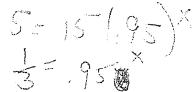
27.) $\sqrt{5x+2} = 2\sqrt{x}$

28.) $\frac{3}{x} + \frac{3x+1}{x^2} = \frac{13}{x^2}$

29.) What is the quotient of $\frac{4-x^2}{x^2-x-2} \div (x^2+3x+2)$?



30.) If f(x)=3x-4, find $f^{-1}(x)$.


31.) If the population of a city was 2 million in 1995 and growing at a rate 6.4%, what will the population be in 2000?

2727,373

32.) The rate at which a liquid vitamin breaks down in the average human body can be modeled by $y = D(0.95)^x$, where y ml of the original dose ,D, remains after x minutes. How long will it take the original dose of 15 ml to be reduced to less than

5 ml?

21,42 min

33.) Given $f(x) = \frac{1}{x+2}$ and g(x) = 3x + 5 find f(g(x)).

